323 research outputs found

    Dissipative flows of 2D foams

    Full text link
    We analyze the flow of a liquid foam between two plates separated by a gap of the order of the bubble size (2D foam). We concentrate on the salient features of the flow that are induced by the presence, in an otherwise monodisperse foam, of a single large bubble whose size is one order of magnitude larger than the average size. We describe a model suited for numerical simulations of flows of 2D foams made up of a large number of bubbles. The numerical results are successfully compared to analytical predictions based on scaling arguments and on continuum medium approximations. When the foam is pushed inside the cell at a controlled rate, two basically different regimes occur: a plug flow is observed at low flux whereas, above a threshold, the large bubble migrates faster than the mean flow. The detailed characterization of the relative velocity of the large bubble is the essential aim of the present paper. The relative velocity values, predicted both from numerical and from analytical calculations that are discussed here in great detail, are found to be in fair agreement with experimental results

    Experimental evidence of flow destabilization in a 2D bidisperse foam

    Full text link
    Liquid foam flows in a Hele-Shaw cell were investigated. The plug flow obtained for a monodisperse foam is strongly perturbed in the presence of bubbles whose size is larger than the average bubble size by an order of magnitude at least. The large bubbles migrate faster than the mean flow above a velocity threshold which depends on its size. We evidence experimentally this new instability and, in case of a single large bubble, we compare the large bubble velocity with the prediction deduced from scaling arguments. In case of a bidisperse foam, an attractive interaction between large bubbles induces segregation and the large bubbles organize themselves in columns oriented along the flow. These results allow to identify the main ingredients governing 2D polydisperse foam flows

    Lateral migration of a 2D vesicle in unbounded Poiseuille flow

    Get PDF
    The migration of a suspended vesicle in an unbounded Poiseuille flow is investigated numerically in the low Reynolds number limit. We consider the situation without viscosity contrast between the interior of the vesicle and the exterior. Using the boundary integral method we solve the corresponding hydrodynamic flow equations and track explicitly the vesicle dynamics in two dimensions. We find that the interplay between the nonlinear character of the Poiseuille flow and the vesicle deformation causes a cross-streamline migration of vesicles towards the center of the Poiseuille flow. This is in a marked contrast with a result [L.G. Leal, Ann. Rev. Fluid Mech. 12, 435(1980)]according to which the droplet moves away from the center (provided there is no viscosity contrast between the internal and the external fluids). The migration velocity is found to increase with the local capillary number (defined by the time scale of the vesicle relaxation towards its equilibrium shape times the local shear rate), but reaches a plateau above a certain value of the capillary number. This plateau value increases with the curvature of the parabolic flow profile. We present scaling laws for the migration velocity.Comment: 11 pages with 4 figure

    Embeddings of SL(2,Z) into the Cremona group

    Full text link
    Geometric and dynamic properties of embeddings of SL(2,Z) into the Cremona group are studied. Infinitely many non-conjugate embeddings which preserve the type (i.e. which send elliptic, parabolic and hyperbolic elements onto elements of the same type) are provided. The existence of infinitely many non-conjugate elliptic, parabolic and hyperbolic embeddings is also shown. In particular, a group G of automorphisms of a smooth surface S obtained by blowing-up 10 points of the complex projective plane is given. The group G is isomorphic to SL(2,Z), preserves an elliptic curve and all its elements of infinite order are hyperbolic.Comment: to appear in Transformation Group

    Structure-dependent mobility of a dry aqueous foam flowing along two parallel channels

    Get PDF
    The velocity of a two-dimensional aqueous foam has been measured as it flows through two parallel channels, at a constant overall volumetric flow rate. The flux distribution between the two channels is studied as a function of the ratio of their widths. A peculiar dependence of the velocity ratio on the width ratio is observed when the foam structure in the narrower channel is either single staircase or bamboo. In particular, discontinuities in the velocity ratios are observed at the transitions between double and single staircase and between single staircase and bamboo. A theoretical model accounting for the viscous dissipation at the solid wall and the capillary pressure across a film pinned at the channel outlet predicts the observed non-monotonic evolution of the velocity ratio as a function of the width ratio. It also predicts quantitatively the intermittent temporal evolution of the velocity in the narrower channel when it is so narrow that film pinning at its outlet repeatedly brings the flow to a near stop

    An analytical analysis of vesicle tumbling under a shear flow

    Full text link
    Vesicles under a shear flow exhibit a tank-treading motion of their membrane, while their long axis points with an angle < 45 degrees with respect to the shear stress if the viscosity contrast between the interior and the exterior is not large enough. Above a certain viscosity contrast, the vesicle undergoes a tumbling bifurcation, a bifurcation which is known for red blood cells. We have recently presented the full numerical analysis of this transition. In this paper, we introduce an analytical model that has the advantage of being both simple enough and capturing the essential features found numerically. The model is based on general considerations and does not resort to the explicit computation of the full hydrodynamic field inside and outside the vesicle.Comment: 19 pages, 9 figures, to be published in Phys. Rev.

    Normal subgroups in the Cremona group (long version)

    Full text link
    Let k be an algebraically closed field. We show that the Cremona group of all birational transformations of the projective plane P^2 over k is not a simple group. The strategy makes use of hyperbolic geometry, geometric group theory, and algebraic geometry to produce elements in the Cremona group that generate non trivial normal subgroups.Comment: With an appendix by Yves de Cornulier. Numerous but minors corrections were made, regarding proofs, references and terminology. This long version contains detailled proofs of several technical lemmas about hyperbolic space

    Growth laws and self-similar growth regimes of coarsening two-dimensional foams: Transition from dry to wet limits

    Full text link
    We study the topology and geometry of two dimensional coarsening foams with arbitrary liquid fraction. To interpolate between the dry limit described by von Neumann's law, and the wet limit described by Marqusee equation, the relevant bubble characteristics are the Plateau border radius and a new variable, the effective number of sides. We propose an equation for the individual bubble growth rate as the weighted sum of the growth through bubble-bubble interfaces and through bubble-Plateau borders interfaces. The resulting prediction is successfully tested, without adjustable parameter, using extensive bidimensional Potts model simulations. Simulations also show that a selfsimilar growth regime is observed at any liquid fraction and determine how the average size growth exponent, side number distribution and relative size distribution interpolate between the extreme limits. Applications include concentrated emulsions, grains in polycrystals and other domains with coarsening driven by curvature

    Influence of shear flow on vesicles near a wall: a numerical study

    Full text link
    We describe the dynamics of three-dimensional fluid vesicles in steady shear flow in the vicinity of a wall. This is analyzed numerically at low Reynolds numbers using a boundary element method. The area-incompressible vesicle exhibits bending elasticity. Forces due to adhesion or gravity oppose the hydrodynamic lift force driving the vesicle away from a wall. We investigate three cases. First, a neutrally buoyant vesicle is placed in the vicinity of a wall which acts only as a geometrical constraint. We find that the lift velocity is linearly proportional to shear rate and decreases with increasing distance between the vesicle and the wall. Second, with a vesicle filled with a denser fluid, we find a stationary hovering state. We present an estimate of the viscous lift force which seems to agree with recent experiments of Lorz et al. [Europhys. Lett., vol. 51, 468 (2000)]. Third, if the wall exerts an additional adhesive force, we investigate the dynamical unbinding transition which occurs at an adhesion strength linearly proportional to the shear rate.Comment: 17 pages (incl. 10 figures), RevTeX (figures in PostScript

    Mechanical probing of liquid foam aging

    Full text link
    We present experimental results on the Stokes experiment performed in a 3D dry liquid foam. The system is used as a rheometric tool : from the force exerted on a 1cm glass bead, plunged at controlled velocity in the foam in a quasi static regime, local foam properties are probed around the sphere. With this original and simple technique, we show the possibility of measuring the foam shear modulus, the gravity drainage rate and the evolution of the bubble size during coarsening
    • …
    corecore